LOWER TROPOSPHERIC HEIGHT TENDENCIES ASSOCIATED WITH THE SHEARWISE AND TRANSVERSE COMPONENTS OF QUASI-GEOSTROPHIC VERTICAL MOTION

by

JONATHAN E. MARTIN

Department of Atmospheric and Oceanic Sciences
University of Wisconsin-Madison
1225 W. Dayton Street
Madison, WI 53706
(608) 262-9845
jemarti1@wisc.edu

Submitted for Publication as a Note in Monthly Weather Review: 18 August 2006
Revised version submitted: 10 October 2006
ABSTRACT

The recent suggestion that lower tropospheric cyclogenesis is predominantly a result of column stretching associated with the updraft portion of the shearwise quasi-geostrophic (QG) vertical motion is quantified through direct calculation of 900 hPa height tendencies via the QG vorticity equation. Comparison of the separate lower tropospheric height tendencies associated with the shearwise and transverse portions of QG omega in a robust cyclogenesis event demonstrates that the shearwise updraft drives the largest part (> 80%) of the cyclogenetic height falls at least through the end of the mature stage of the life cycle. The lower tropospheric height falls and vorticity production near the sea-level pressure minimum of the occluded surface cyclone are driven nearly equally by shearwise and transverse updrafts.
1. Introduction

In a recent paper, Martin (2006) examined the distributions of the quasi-geostrophic (QG) vertical motions associated with the transverse and shearwise components of the Q-vector (oriented perpendicular to, and along, the geostrophic vertical shear, respectively) throughout the life cycle of two extratropical cyclones. He presented evidence that these two components of the QG vertical motion play different roles in the typical mid-latitude cyclone life cycle. Specifically, it was suggested that the updraft portion of the shearwise couplet, through its associated column stretching, was responsible for the origin and subsequent intensification of the lower tropospheric cyclone. The updraft portion of the transverse couplets, associated with the frontal circulations, were thought to make little contribution to the development of the sea-level pressure minimum until late in the cyclone life cycle. The arguments in Martin (2006) were based solely upon examination of the distribution of mid-tropospheric vertical motion and made no direct calculation of vorticity or height tendency. This note extends the evidence in favor of this hypothesis by computing the magnitude and distribution of the lower tropospheric height tendencies attributable to each component of the QG omega throughout a robust cyclogenesis event.

The paper is organized as follows. In Section 2, the method of calculating the height tendencies associated with each component of omega, based upon the QG vorticity equation, is outlined. The results are presented in Section 3 where it is also shown that the calculated height tendencies fairly faithfully represent the height tendencies
calculated from gridded model analyses. The implications of the results, and some conclusions based upon them, are discussed in Section 4.

2. Methodology

Following Martin (2006) we calculate the transverse (ω_t) and shearwise (ω_s) portions of the total QG omega using gridded model analyses from the National Centers for Environmental Prediction’s (NCEP’s) Global Forecast System (GFS) model. These gridded analyses are bi-linearly interpolated from their original grid to a 1° x 1° latitude-longitude grid at 19 isobaric levels from 1000 to 100 hPa at 50 hPa intervals. Employing the technique of successive over-relaxation (SOR), we then solve the f-plane version of the QG omega equation, in Q-vector form (Hoskins et al. 1978) using a spatially averaged static stability that varies for each time with f_o set equal to the central latitude (45.5°N) of the domain. With geostrophic forcing corresponding to the divergences of Q, its across-isentrope component, Q_n, and its along-isentrope component, Q_s, the total, transverse, and shearwise QG vertical motions, respectively, are returned in units of Pa s⁻¹. We then employ the QG vorticity equation

$$\frac{\partial \zeta_g}{\partial t} = -\nabla_g \cdot \nabla \zeta_g + f_o \frac{\partial \omega}{\partial \rho}$$

(1)

to consider the lower tropospheric height tendencies associated with each component of QG vertical motion. We recast the LHS of (1) in terms of geopotential height, Z, by substituting $\frac{g}{f_o} \nabla^2 Z = \zeta_g$ and then partition ω as $\omega = \omega_n + \omega_s$ to get

4
\[
\n\nabla_h \frac{\partial Z}{\partial t} = -\frac{f_z}{g} \vec{V}_g \cdot \nabla z_g + \frac{f_z^2}{g} \left(\frac{\partial \omega_u}{\partial p} + \frac{\partial \omega_v}{\partial p} \right),
\]

where \(t \) is the time coordinate, \(g \) the gravitational acceleration, \(\nabla_h \) is the 2-D gradient operator, and \(\vec{V}_g \) is the geostrophic wind vector. Thus, three separate terms on the RHS of (2) contribute to height tendencies. We consider each of these terms as a separate “forcing” and use successive over-relaxation on (2) to solve for a \(\frac{\partial Z}{\partial t} \) associated with each term. In subsequent discussion of the results, we shall refer to \(\frac{\partial Z}{\partial t} \) and \(\frac{\partial Z}{\partial t} \), as the contributions to height tendencies made by the transverse and shearwise omega, respectively. (The contribution made by 900 hPa geostrophic vorticity advection, \(\frac{\partial Z}{\partial t} \), is much smaller than the other two and is not illustrated here). Each term is calculated at 50 hPa intervals from 900 to 250 hPa employing a vertical centered difference for the \(\omega \)-terms. As the ensuing analysis will concentrate on height tendencies at 900 hPa, only vertical motions at 950 and 850 hPa are used in calculating \(\frac{\partial \omega_u}{\partial p} \) and \(\frac{\partial \omega_v}{\partial p} \).

3. Results

a. Synoptic overview

We consider the case of cyclogenesis, described by Martin (2006), that occurred in the northeast Pacific Ocean in early October 2004. Figure 1 shows the location of the sea-level pressure minimum, along with its intensity, at 6 h intervals from 1200 UTC 6
October through 0000 UTC 8 October 2004. The storm of interest underwent a rather dramatic period of deepening between 1800 UTC 6 October through 1800 UTC 7 October during which its central pressure dropped by 40 hPa. A brief synoptic overview of this cyclogenesis event follows.

At 1800 UTC 6 October, a modest sea-level pressure minimum of 1004 hPa was located nearly due south of Kodiak Island, AK (Fig. 2a). The surface frontal analyses reflect thermal boundaries that extended upwards to at least 850 hPa at which level a similarly modest geopotential height disturbance was associated with a significant thermal wave (Fig. 2b). The lower tropospheric structures were associated with a shortwave disturbance in northwesterly flow at 500 hPa (Fig. 2c) which displayed a rather modest absolute vorticity signature at that level.

By 0600 UTC 7 October, the surface cyclone had deepened impressively to 980 hPa (Fig. 3a). The surface cold frontal baroclinic zone was particularly well developed and was manifest at 850 hPa as was a nascent occluded front that extended westward from the triple point to the northwest quadrant of the storm (Fig. 3b). The associated 500 hPa shortwave had also deepened during this 12 h interval and was, by this time, associated with a significant upper tropospheric vorticity maximum as well as strong geostrophic diffluence downstream of the trough axis (Fig. 3c).

In the 6 hours ending at 1800 UTC 7 October, the surface cyclone slowed its horizontal progression and hardly deepened, exhibiting a SLP minimum of 964 hPa by that time (Fig. 4a). A well developed occluded structure, reflected in the occluded thermal ridge evident at 850 hPa which wrapped back into the cyclone center (Fig. 4b), now characterized the storm. The lower tropospheric cold frontal zone remained very
prominent at this level at this time. The 500 hPa shortwave associated with this
cyclogenesis event occupied the entire Gulf of Alaska by 1800 UTC 7 October (Fig. 4c)
and was characterized by a robust upper tropospheric absolute vorticity maximum.

b. 900 hPa height tendencies

The observed 900 hPa height tendency between 1200 UTC 6 October and 0000
UTC 7 October is shown, along with the location of the SLP minimum and associated
surface fronts at 1800 UTC 6 October, in Fig. 5a. The height falls precede the cyclone
while height rises occur to the west of the SLP minimum, particularly north of the surface
cold front. The total 900 hPa QG height tendency, calculated instantaneously at 1800
UTC 6 October, is shown in Fig. 5b. Note the height fall/rise couplet has generally the
same distribution relative to the surface low as the observed 12 h tendency in Fig. 5a
though the magnitudes are not identical. The shearwise contribution to the 900 hPa
height tendencies, \(\frac{\partial Z}{\partial t}_s \), is shown in Fig. 5c. It is clear that the lion’s share of the QG
height falls to the east of the surface cyclone are associated with the shearwise updraft.
Also interesting is that a widespread region of significant height rises west of the cyclone
is related to the shearwise downdraft. The transverse contribution to the 900 hPa height
tendencies, \(\frac{\partial Z}{\partial t}_n \), contributes next to nothing east of the SLP minimum but contributes a
substantial height fall region to the west of the cyclone, the axis of which is centered on
the location of the surface cold front (Fig. 5d).
By 0600 UTC 7 October, the cyclone had intensified considerably. The average 900 hPa height tendency observed between 0000 UTC 7 October and 1200 UTC 7 October is shown, along with the location of the SLP minimum and associated surface fronts at 0600 UTC 7 October, in Fig. 6a. Consistent with this period of explosive development, the height falls are more concentrated and twice as large in magnitude as they had been in the prior 12 h period. Once again, the surface cold front represents a boundary between significant height rises to its north and nearly no tendency to its south. Notice that, despite the two-fold increase in the magnitude of the height falls to the east, the height rises to the west of the cyclone are nearly identical in magnitude to those observed in the prior interval.

The total 900 hPa QG height tendency, calculated instantaneously at 0600 UTC 7 October, is shown in Fig. 6b. Though larger in magnitude, the instantaneous QG height/rise couplet faithfully represents the actual height tendency during the 12 h interval with the large height fall occurring just to the east of the still deepening surface low. The shearwise contribution to the 900 hPa height tendencies, \(\frac{\partial Z}{\partial t} \), is shown in Fig. 6c. Approximately 80% of the QG height falls east of the surface cyclone are associated with the shearwise updraft. At this time, the transverse contribution to the 900 hPa height tendencies, \(\frac{\partial Z}{\partial t} \), does make some contribution to the height falls east of the SLP minimum, particularly to the immediate southeast of the cyclone center (Fig. 6d). Once again, the surface cold front is nearly coincident with the axis of largest height falls to the west of the SLP minimum.
In the 12 h ending at 0000 UTC 8 October, the surface cyclone experienced little additional deepening and migrated only slightly to the northeast while developing a deeply occluded structure. The average 900 hPa height tendency observed between 1200 UTC 7 October and 0000 UTC 8 October is shown, along with the location of the SLP minimum and associated surface fronts at 1800 UTC 7 October, in Fig. 7a. The height rise/fall couplet is very concentrated with reduced magnitude in the height fall component, possibly an artifact of the near stationarity of the cyclone during this 12 h interval. The surface cold front is, again, a boundary between height rises to its north and nearly no changes to its south.

The total 900 hPa QG height tendency, calculated instantaneously at 1800 UTC 7 October, is shown in Fig. 7b. The magnitude of the height fall maximum is much greater than its 12 h average observed counterpart. Also missing is the very large height rise just to southwest of the surface low. Despite these significant shortcomings in magnitude, the overall pattern of height falls and rises is a reasonable facsimile of the observed tendencies. The shearwise contribution to the 900 hPa height tendencies, \(\frac{\partial Z}{\partial t} \), is shown in Fig. 7c. At this time, just over half of the total height fall region north of the SLP minimum is contributed by the shearwise updraft. The remainder of the QG height falls are a result of the transverse contribution to the 900 hPa height tendencies, \(\frac{\partial Z}{\partial t} \), which is especially large near the triple point (Fig. 7d). Note that one axis of minimum \(\frac{\partial Z}{\partial t} \) is nearly coincident with the occluded front (and with the occluded thermal ridge at 850 hPa (Fig. 4b)) while the other is, as before, coincident with the surface cold front.
4. Implication and Conclusions

In Martin (2006), the distribution of middle tropospheric (700 hPa) omega was used to infer that the shearwise updraft was responsible for the intensification of SLP minima throughout the incipient and mature stages of the mid-latitude cyclone life cycle. The transverse omega, associated with fronts, was suggested to make no direct contribution to intensification of the surface low until the post-mature (occluded) stage. The results shown here lend quantitative support to those inferences by demonstrating that the QG height tendencies contributed by the column stretching associated with the lower tropospheric shearwise updraft constitute the majority of the cyclogenetic height falls during the incipient and mature stages of the life cycle examined here. The height tendencies associated with the transverse omega are concentrated along the surface cold front through the incipient and mature stages but become significant contributors to the height falls in the vicinity of the surface low during the occluded stage of the life cycle. Thus, we conclude that the shearwise vertical motions drive cyclogenesis at least through the end of the mature stage of the life cycle. Given the relationship between the forcing for shearwise omega and the Sutcliffe (1947)/Trenberth (1978) forcing for QG omega (Martin 1999), this circumstance accounts for the diagnostic success of the Sutcliffe/Trenberth approximation when considering the incipient to mature stages of the cyclone life cycle. The lower tropospheric height falls and vorticity production near the SLP minimum of occluded surface cyclones are apparently driven nearly equally by

1 Martin (1998) points out that the accuracy of this diagnostic erodes considerably as the cyclone enters the post-mature phase.
shearwise and transverse contributions to the upward vertical motions. Understanding the nature of this interaction during the occluded stage is a topic of considerable scientific interest and operational relevance and is presently being pursued.
REFERENCES

FIGURE CAPTIONS

Fig. 1 Location (“L”) and intensity (bold numbers below “L”) of the sea-level pressure minimum of interest at 6 h intervals from 1200 UTC 6 October to 0000 UTC 8 October 2004.

Fig. 2 (a) Sea-level isobars (solid lines) from the GFS analysis at 1800 UTC 6 October 2004. Isobars are labeled in hPa and contoured every 4 hPa. Surface fronts are subjectively analyzed with bold dashed line indicating a secondary sea-level pressure trough. (b) 850 hPa geopotential height (solid lines) and temperature (dashed lines) from the GFS analysis at 1800 UTC 6 October 2004. Geopotential height labeled in dam and contoured every 3 dam. Temperature labeled in °C and contoured every 3°C. (c) 500 hPa geopotential height (solid lines) and absolute vorticity (shaded) from the GFS analysis valid at 1800 UTC 6 October 2004. Geopotential height labeled in dam and contoured every 6 dam. Absolute vorticity shaded in units of 10⁻⁵ s⁻¹ and contoured every 2 x 10⁻⁵ s⁻¹ beginning at 20 x 10⁻⁵ s⁻¹.

Fig. 3 (a) As for Fig. 2a but for 0600 UTC 7 October 2004. (b) As for Fig. 2b but for 0600 UTC 7 October 2004. (c) As for Fig. 2c but for 0600 UTC 7 October 2004.

Fig. 4 (a) As for Fig. 2a but for 1800 UTC 7 October 2004. (b) As for Fig. 2b but for 1800 UTC 7 October 2004. (c) As for Fig. 2c but for 1800 UTC 7 October 2004.
Fig. 5 (a) 12 h average 900 hPa height tendency between 1200 UTC 6 October and 0000 UTC 7 October 2004. Height tendencies are labeled in units of m h\(^{-1}\) and contoured every 3 m h\(^{-1}\). Positive (negative) height tendencies are shaded (unshaded). Position of sea-level pressure minimum and surface fronts at 1800 UTC 6 October 2004 is overlaid. (b) Calculated total 900 hPa QG height tendencies at 1800 UTC 6 October 2004. Height tendencies are labeled, contoured, and shaded as in Fig. 5a. Position of sea-level pressure minimum and surface fronts at 1800 UTC 6 October 2004 is overlaid. (c) Calculated 900 hPa \(\frac{\partial Z}{\partial t}\), at 1800 UTC 6 October 2004. Height tendencies are labeled, contoured, and shaded as in Fig. 5a. Position of sea-level pressure minimum and surface fronts at 1800 UTC 6 October 2004 is overlaid. (d) Calculated 900 hPa \(\frac{\partial Z}{\partial t}\)\(_n\) at 1800 UTC 6 October 2004. Height tendencies are labeled, contoured, and shaded as in Fig. 5a. Position of sea-level pressure minimum and surface fronts at 1800 UTC 6 October 2004 is overlaid.

Fig. 6 (a) As for Fig. 5a but for the 12 h period 0000 UTC 7 October through 1200 UTC 7 October. Position of sea-level pressure minimum and surface fronts at 0600 UTC 7 October 2004 is overlaid. (b) As for Fig. 5b but for 0600 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 0600 UTC 7 October 2004 is overlaid. (c) As for Fig. 5c but for 0600 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 0600 UTC 7 October 2004 is overlaid. (d) As for Fig. 5d but for 0600 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 0600 UTC 7 October 2004 is overlaid.
Fig. 7 As for Fig. 5a but for the 12 h period 1200 UTC 7 October 2004 through 0000 UTC 8 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid. (b) As for Fig. 5b but for 1800 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid. (c) As for Fig. 5c but for 1800 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid. (d) As for Fig. 5d but for 1800 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid.
Fig. 1 Location ("L") and intensity (bold numbers below "L") of the sea-level pressure minimum of interest at 6 h intervals from 1200 UTC 6 October to 0000 UTC 8 October 2004.
Fig. 2. (a) Sea-level isobars (solid lines) from the GFS analysis at 1800 UTC 6 October 2004. Isobars are labeled in hPa and contoured every 4 hPa. Surface fronts are subjectively analyzed with bold dashed line indicating a secondary sea-level pressure trough. (b) 850 hPa geopotential height (solid lines) and temperature (dashed lines) from the GFS analysis at 1800 UTC 6 October 2004. Geopotential height labeled in dam and contoured every 3 dam. Temperature labeled in °C and contoured every 3°C. (c) 500 hPa geopotential height (solid lines) and absolute vorticity (shaded) from the GFS analysis valid at 1800 UTC 6 October 2004. Geopotential height labeled in dam and contoured every 6 dam. Absolute vorticity shaded in units of 10⁻⁵ s⁻¹ and contoured every 2 x 10⁻⁵ s⁻¹ beginning at 20 x 10⁻⁵ s⁻¹.
Fig. 3: (a) As for Fig. 2a but for 0600 UTC 7 October 2004. (b) As for Fig. 2b but for 0600 UTC 7 October 2004. (c) As for Fig. 2c but for 0600 UTC 7 October 2004.
Fig. 5 (a-d) 12-hour average 900 hPa height tendency between 1200 UTC 2 October and 0000 UTC 3 October 2004. Height tendencies are shaded in units of m s⁻¹ and contoured every 3 m s⁻¹. Positive (negative) height tendencies are shaded (unshaded). Position of sea-level pressure minimum and surface fronts at 0000 UTC 2 October 2004 are overlaid. (a) Position of sea-level pressure minimum and surface fronts at 1200 UTC 2 October 2004. (b) Position of sea-level pressure minimum and surface fronts at 1800 UTC 2 October 2004. (c) Position of sea-level pressure minimum and surface fronts at 0000 UTC 3 October 2004. (d) Position of sea-level pressure minimum and surface fronts at 1200 UTC 3 October 2004.
Fig. 7. As for Fig. 5a but for the 12 h period 1200 UTC 7 October 2004 through 0000 UTC 8 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid. (b) As for Fig. 5b but for 1800 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid. (c) As for Fig. 5c but for 1800 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid. (d) As for Fig. 5d but for 1800 UTC 7 October 2004. Position of sea-level pressure minimum and surface fronts at 1800 UTC 7 October 2004 is overlaid.