
1

AOS 452 - Lab 8 Handout
 C-shell scripts and four-panel plots

Tip of the Day: You may find the following information handy. GEMPAK contains two commands, save and
restore, that are used to save and recall parameter lists. For example, let’s say you are running gdplot and have it
set up just right so that it produces a plot of 500-mb geopotential heights over North America. You could then type (in
the GEMPAK prompt) save hght500 (or whatever you want to call it). At any point in the future, you could then
type restore hght500 within gdplot to restore the settings you saved, so long as you are working in the same
directory in which you saved the settings.

Introduction
I am sure many of you have found that creating certain GEMPAK plots can occasionally be a time-
consuming and frustrating task. However, matters can be simplified by doing a little computer
programming. Do not get nervous! The programming to which you will be introduced today
requires you to remember only a few simple commands. After looking through a few examples in
this lab and working through some on your own, you will find that the programming required for
creating maps in GEMPAK is quite easy.

Today, we are going to cover C-shell scripts. A shell is a program that provides an interactive
interface between a user and the operating system. Basically, the main function a shell performs is
to read in from the terminal what one types, run the commands, and show any output. The C-shell is
one popular Unix shell, although there are many others. A C-shell script then is simply a text file,
which is written in a particular format that contains all of these commands that would normally be
typed into a terminal window, such as GEMPAK parameters. C-shell scripts will greatly reduce the
time spent while working with GEMPAK programs.

CREATING A NEW C-SHELL SCRIPT FOR GEMPAK
Begin by opening up a new text file using your favorite text editor (gedit, vi, emacs, etc.). The very
first line of the text file needs to be a ‘flag’ that identifies the file as a C-shell script:

 #!/bin/tcsh	–f	

This line needs to be at the beginning of every C-shell script you create and make sure there are no
spaces or blank lines in front of this command. A subsequent line that needs to appear in the script
is a statement to start one of the GEMPAK programs. For example, if we wanted to run the
GEMPAK program gdplot in the script, the line would look like:

gdplot	<<	EOF	

	

This will tell the machine to run the program gdplot , until EOF appears later in the script (as the
‘<<’ symbols instruct the program to stop running at that point). This command is essentially the
same as typing gdplot directly in the terminal window. Next, a list of all the parameter names that
need to be changed must appear, using the same syntax as if you were changing them directly while
running the GEMPAK program. After the list of parameter changes, you need the commands run
(or r), exit (or e), and gpend.

2

So, the text file for your C-shell script would look something like this:

#!/bin/tcsh	-f	

	

gdplot	<<	EOF	

GDFILE			=	$MODELDATA/16092800_eta.gem	

GDATTIM		=	f00.	

.	

.	

(set	all	other	parameters	in	gdplot)	

.	

.	

.	

run	

	

exit	

EOF	

gpend	

	
NOTE: Make sure there is a blank line following every run (or r) command you place in your script. You may
remember that most GEMPAK programs request that you hit <Enter> before they will make a plot. That is
what the blank line is for.

The easiest way to create this C-shell script is to begin by running the GEMPAK program you
intend to use in the script and to find the list of parameter settings from within the program. Then,
just copy and paste the entire set of parameters into the C-shell script and edit them to meet your
needs. It is not necessary to have all of the parameters in the script, as you just need to enter the
ones you intend to change. However, it is easiest to just copy and paste all of them into the script so
that you do not forget about any of them.

Once the entire parameter list is included in the script, be sure to save it under any name you
choose. For ease of use, try to make sure you save all of your scripts with names that have the
extension, .csh, attached to the file name (e.g., hght500.csh).

In order to run a C-shell script, you have to make sure the script is an executable file, not just a
simple text file. To make the text file executable, enter the following at the Unix prompt:

chmod	700	scriptname.csh	

	

To run the script, simply type the name of the script into the terminal (scriptname.csh) and hit
<Enter>. The script will then enter each line of the text file, as if you were typing it right to the
terminal. (Note that some of your accounts may be set up such that you need to type
./scriptname.csh to run the script.)

It is possible to use a wide variety of settings for the device parameter in GEMPAK scripts, such as
postscript (ps), X-window (xw) or gif. When using an X-window (xw) as your device, you may
want to remove gpend from the script. This way, the figure will remain on the screen when your

3

script is done running so that you may view it. However, it is very important that you remember to
use gpend when you are finished viewing your figure. The command gpend will close the graphics
window, as well as any other GEMPAK processes that may be running.

As you may now see, scripts are an easy way to create plots containing overlays of multiple
variables or multiple-panel figures. As an example, copy this C-Shell script over to one of your
directories using the following syntax:

cp	/ef5/raid6/class/fall11/mbreeden/Desktop/452labs2014/500vars.csh	.	

	
OR

Download the script from Learn@UW if it won’t let you copy the script due to permissions

First, make this script executable as was previously described. Then, run the script by typing the
name of the script at a Unix prompt. The script should create a figure of the 300-700 mb thickness,
absolute geostrophic vorticity, and thermal wind barbs from the 0-hour forecast of this morning’s
GFS model run. Once you have the script running successfully, type gpend. Take a look at the
script, and note how I was able to plot multiple variables (overlaying them/using different colors for
each variable). Note that my script used the GEMPAK program gdplot. However, you can use any
of the GEMPAK programs within a script.

FOUR-PANEL PLOTS
It is often advantageous to show several plots on one output display (e.g., sheet of paper, X-
window) to get a sense of the time evolution of a particular variable or to compare variables at
different levels of the atmosphere at one particular time. The idea behind creating multiple panel
figures is similar to that of creating overlays. You begin in your script by first running one set of
parameters to the first panel with clear = yes. Then, you will run subsequent sets of parameters to
the same device with clear = no. The key parameter in making multiple panel plots is the panel
parameter. For instance, the parameter list before the first run command would include a panel
parameter setting such as:

panel	=	1/1/1/1	

This will set the panel to the upper-left quarter of the window/page (for a 4-panel plot), with a box
drawn around the panel with color 1 and width 1. Then, you will have a second parameter list, with
a run command following it, with parameter changes including

panel	=	2/1/1/1	

clear	=	no	

as well as any other additional parameters that you wish to change. There are several ways to divide
a figure into different panels. I suggest typing phelp panel from one of the GEMPAK programs
for more information.

4

MORE ADVANCED C-SHELL SCRIPTING
The basic structure of C-shell scripts as described thus far should allow you to create any plot you
wish in GEMPAK. The information that follows describes a few commands and techniques in C-
shell scripting that serve primarily as time savers. I have created three sample scripts that use these
commands and techniques. To copy these files into your directory, enter the following at the Unix
prompt:

cp	/ef5/raid6/class/fall11/mbreeden/Desktop/testscr*.csh	.	

	
OR

Again, Download from Learn@UW if you can’t copy these files
	

Script #1: Comments, special characters in the title parameter, and the sleep command
Start gedit and open testscr1.csh. Take note of the first line of the script: #!/bin/tcsh –f
This exact character sequence is required on the first line of every script you create.

The next three lines of text are comment lines. A comment line is created by entering a pound sign
or hashtag (#) in the first space of the line. The line will be ignored when the script runs (an
exception is #!/bin/tcsh	–f on the first line).

You may have noticed the “@” and “~” symbols in the values for the title parameter. These
symbols are part of a group of special characters that are replaced by certain values from other
parameters when the script is executed. The “@” symbol corresponds to the vertical level (specified
in glevel), while the “~” symbol corresponds to the valid date/time of the forecast (specified in
gdattim). Other special characters can be found in phelp	title. These characters can alleviate the
hassle of editing the title every time you change the vertical level, forecast time, etc., in the script.

Now, run the script. The plot should appear on the screen for a few seconds, and then disappear.
The time in which the plot is on the screen when gpend is in the script likely is much too short for
you to determine the quality of the plot. This shortfall can be overcome by using the sleep
command.

When a script encounters the sleep command, the script will pause for the specified amount of time
at the place where the command is located. In testscr1.csh, uncomment sleep 10 between EOF and
gpend. The script will pause for 10 seconds between closing gdplot and executing gpend. Run
the script again. You will see that the plot will stay on the screen for a longer period of time (about
10 seconds) than the last run.

Script #2: Input variables on the command line
Now open testscr2.csh in a gedit window. The general structure of this script looks much the same
as the first script. However, notice that there are some parameters with a value of a dollar sign
followed by a number (e.g. gdattim = $1, glevel= $2, cint = $3, and title = $4). Basically, specific
values in the parameters listed are replaced by variables $1, $2, $3, and $4. The values of these
variables are specified in the command (terminal) line that runs the script.

Say we want an 18-hour forecast of 300-mb geopotential heights with a contour interval of 120.
This can be done by entering the following at the Unix prompt:

5

testscr2.csh f18 300 120 '300 mb heights'
Notes:
! You must be sure to specify the input values in the correct order in the command line. The first value after
the script name corresponds to $1, the second value after the script name corresponds to $2, and so forth.

! There is no limit to the number of $ variables you can use. For example, you can use $1,$2,…,$32 in
place of gdplot parameters values in the script, and then specify the parameter values in the command line.

! Input that contains spaces must be enclosed in single quotation marks to be considered a single value for
one variable. For example, '300 mb heights' would be a value for one variable, while 300 mb
heights would be values for three variables (variable 1 = 300, variable 2 = mb, variable 3 = heights).

Script #3: Color fills, overlays and four-panel plots
Producing overlays and multiple-panel plots using scripts is very easy compared to the drawn-out
procedure we learned in previous labs. Open testscr3.csh in a gedit window. This script generates a
four-panel plot with 300-mb height contours overlaying 300-mb isotachs, represented by color fills.

The first part of the script produces a plot in the upper-left quadrant, the second produces a plot in
the upper-right quadrant, the third produces a plot in the lower-left quadrant, and the last part
produces a plot in the lower-right quadrant. Notice that you do not have to list all the parameters
after the first run of the GEMPAK program (in this case, gdplot). You need only to list those
parameters you want to change.

Run this script. You can see each part of the script being run as the plot is created.
Note: For any GEMPAK plot you create that contains both color fills and contours, you must have the color
fills produced first. If you plot color fills after contours, the color fills will cover up the contours.

TOWARDS MORE COMPLICATED DIAGNOSTICS – (I.E. THINGS TO THINK ABOUT FOR A WX
DISCUSSION)

Here are a few notes on using GEMPAK to compute complex diagnostics effectively…

1) First, decide if the diagnostic you are trying to show is a scalar or a vector. If it's a scalar,
use gfunc=something; for vectors, use gvect=something.

2) I recommend using gdcntr (for scalars) or gdwind (for vectors) while you debug your
diagnostic expressions. gdplot tends to give little information about what is going wrong.

3) gfunc/gvect does not work in isolation, but also depends critically on your settings for
gdattim, glevel, gvcord, and gdfile. The resulting plot then depends on your scaling
factor and contour interval, which work in tandem (i.e., cint=60 with scale=0 will
produce the same contour lines as cint=6 with scale=-1).

4) For layer functions, you need to specify two levels in glevel. For example, the 850–700mb
thickness could be computed using:
 glevel = 700:850
 gfunc = ldf(hght) !Use phelp gfunc to see what the function ldf does.

5) You can also use special symbols to override your gdattim, glevel, gvcord, and
gdfile settings, as described in Appendix B1 (see the class website). For example, an
alternate way to compute the 850–700-mb thickness is:
 glevel = 700
 gfunc = sub(hght,hght@850)

6

or you could say
 glevel = 850
 gfunc = sub(hght@700,hght)

6) How do I know the order of subtraction for the ldf and sub functions? Look at Appendix
B1 of the GEMPAK documentation (available off of the class website), which is similar to
phelp gfunc, but more detailed. For complicated vector functions, Appendix B2 can be
very useful.

7) Functions can also be nested. For example, if I wanted to compute , I can do:
gvect=smul(-1,kcrs(wnd))

If you seem to be running into problems with your scripts, ask for help.

