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Abstract1

Despite continuous improvements in weather forecasting, large-scale forecast busts—sudden drops in accuracy—still2

occur. In this study, we extend the concept of busts to define ‘exceptionally poor forecasts’ and introduce the notion3

of ‘exceptionally good forecasts,’ both derived using a methodology that accounts for seasonality in forecast skill. We4

apply this framework to 6-day forecasts over Europe in ERA5 reforecasts (1979–2023) to identify and compare their5

characteristics. The analysis explores potential links between these forecasts and large-scale weather regimes in the6

North Atlantic–European region, with particular attention to the occurrence and timing of regime transitions. We7

identify a declining trend in the annual rate of poor forecasts and an increasing trend in the rate of good forecasts,8

consistent with advances in the number and quality of observations. Poor forecasts occur more often in the warm9

season and good forecasts are found throughout the year, and their mean patterns contrast sharply: Rossby wave10

trains characterize poor forecasts, whereas blocking over northern Europe dominates good forecasts. Periods of11

poor forecast performance coincide with an above-average frequency of cyclonic regimes and persistent no-regime12

periods. Conversely, good forecasts show an above-average association with anticyclonic regimes, particularly with13

Scandinavian blocking. Whereas the share of cases with a regime transition is similar in both skill categories (60%),14

transitions occur significantly later during poor forecasts and earlier in good forecasts, providing a so-called ’window15

of opportunity’ when initialized early in a regime life cycle. If regime transitions during poor forecasts occur early, the16

errors are not necessarily linked to wrong regime predictions, suggesting a fairly correct representation of the large-17

scale circulation while synoptic-scale systems may drive large errors restricted to Europe. In summary, our study18

contributes to understanding the large-scale circulation configurations and stages of regime evolution that favour19

exceptionally poor or good forecasts over Europe.20

1 | INTRODUCTION21

Over the last few decades, numerical weather prediction has steadily advanced inwhat Bauer et al. (2015) describes as22

a “quiet revolution”, leading tomore accurateweather forecasts –marked by a one-day-per-decade increase in forecast23

skill (Bauer et al., 2015, their Figure 1). This improvement in forecast accuracy is attributable to several factors, includ-24

ing an expanded observational network, improvements in the representation of model physics, and enhancements in25

data assimilation techniques (e.g., Magnusson and Källén, 2013; Bauer et al., 2015). Despite this overall progress, fore-26

cast skill remains variable and can fluctuate significantly on a day-to-day basis, due to the inherently chaotic nature27

of atmospheric flow (Lorenz, 1963). While subseasonal-to-seasonal forecast skill can benefit from broader sources of28

predictability—such as teleconnections and land–atmosphere coupling (e.g., Vitart, 2017)—medium-range forecasts29

(3–14 days lead time) are primarily governed by synoptic-scale dynamics, accuracy of initial conditions and quality of30

model physics. This implies that predictive skill can be lost through the non-linear amplification of small errors, model31

limitations, and insufficient or misused observational data (Palmer, 1999).32

Occasionally, forecast performance deteriorates abruptly and substantially, resulting in dramatically incorrect pre-33

dictions—a phenomenon referred to as a ’forecast bust’ or ’dropout’ (Rodwell et al., 2013). These events are defined by34

large deviations between predicted and observed atmospheric states, often occurring within well-observed regions35

and at lead times where forecast skill is typically high. While the term ’forecast bust’ can be applied across scales, it36

is primarily used to describe large-scale events, such as those affecting the entire European region at medium-range37

forecast lead times (Rodwell et al., 2013). Forecast busts underscore the inherent limits to atmospheric predictability38

and are especially concerning due to their potential socioeconomic impacts (e.g., Magnusson, 2017). The fact that39

such busts often occur across multiple forecast systems simultaneously indicates that some events may be charac-40
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terized by intrinsic unpredictability rather than system-specific shortcomings (e.g., Rodwell et al., 2013; McLay and41

Satterfield, 2022). Several past bust events have resulted in substantial surface weather errors, revealing the influ-42

ence of upper-tropospheric flow on surface conditions (e.g., Magnusson, 2017; Grams et al., 2018). In some instances,43

these busts led to large 2-meter temperature errors over European sub-regions, highlighting the need for a deeper44

understanding of the mechanisms driving forecast busts.45

Characteristic initial-condition patterns associatedwith forecast busts over Europe include a trough over the Rock-46

ies and a high-pressure system over Canada, often accompanied by positive CAPE anomalies to the east (Rodwell et al.,47

2013). Subsequent research has linked such setups to mesoscale convective systems (MCSs) over North America that48

can modify the downstream upper-level flow and reduce European predictability several days later (e.g., Parsons et al.,49

2019; Lojko et al., 2022). Error-sensitivity analyses further point to key regions such as the tropical eastern Pacific,50

western/central Canada, and the western Atlantic as important for bust development (Magnusson, 2017). Consistent51

with this, feature-based diagnostics show that forecast errors are increase in the presence of weather systems, likely52

due to diabatic heating errors associated with latent heat release (Grams et al., 2018; Wandel et al., 2024; Yu et al.,53

2025). Recurving tropical cyclones in the North Atlantic during the autumn bust peak also emerge as important trig-54

gers, as their extratropical transitions can strongly perturb the midlatitude jet and downstream circulation (Lillo and55

Parsons, 2017; Keller et al., 2019; Brannan and Chagnon, 2020).56

Medium-range forecast skill fluctuations partly stem from variations in the intrinsic predictability of the atmo-57

sphere, with certain flow regimes offering larger predictability than others (e.g., Ferranti et al., 2015; Matsueda and58

Palmer, 2018). Regime-dependent forecast skill horizon is approximately 3–5 days longer in winter compared to the59

other seasons (Büeler et al., 2021), with the two North Atlantic Oscillation (NAO) phases having the longest skill60

horizon, particularly in winter (e.g., Ferranti et al., 2018; Matsueda and Palmer, 2018). Anticyclonic regimes with61

blocking over Europe are generally less predictable, especially in spring and summer; an exception is Scandinavian62

blocking, which, is the most predictable regime during summer on the medium-range timescale (Büeler et al., 2021).63

Predictability is notably lower in situations in the absence of a regime, suggesting that transient, non-persistent flow64

patterns are particularly challenging to forecast (e.g. Osman et al., 2023). Transitions between regimes also pose sig-65

nificant difficulties, especially the onset of blocked regimes (e.g., Ferranti et al., 2015; Wandel et al., 2024). Forecast66

busts have been linked to the initiation and amplification of Rossby wave activity over the Atlantic, leading to large-67

scale circulation changes and, in some cases, missed onsets of blocked regimes over Europe (e.g., Lillo and Parsons,68

2017;Magnusson, 2017; Grams et al., 2018; Hauser et al., 2023). However, the connection between busts and regime69

transitions remains insufficiently explored.70

This study presents a substantially updated and extended characterization of 6-day forecast busts over Europe71

and provides new insights into the role of large-scale circulation patterns and regime transitions. We revise the original72

definition of busts to account for the seasonality of skill measures, enabling the detection of forecasts that perform73

anomalously poorly for their season; these are referred to in this study as ’exceptionally poor forecasts’. For the first74

time, these forecasts are compared to their counterpart—exceptionally good forecasts—allowing a detailed compari-75

son of the characteristics of forecasts at the two extremes of the skill distribution. As all previous systematic studies76

(e.g., Rodwell et al., 2013; Lillo and Parsons, 2017) relied on ERA-Interim reforecasts (Dee et al., 2011), which have77

since become outdated, this study uses ERA5 reforecasts from ECMWF (Hersbach et al., 2020) for the period from78

1979 to 2023. Despite being based on an older model cycle (41r2), compared to the current operational cycle (49r1),79

the value of the dataset lies in its 45-year consistency, which allows for a more robust analysis of large-scale atmo-80

spheric variability. Large-scale circulation changes are analysed within a weather regime framework based on the81

year-round North Atlantic–European classification of Grams et al. (2017), whose regimes are physically meaningful82

(Hochman et al., 2021) and widely used in dynamical and predictability studies across various time scales, and practi-83
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cal applications such as in the energy sector (e.g., Büeler et al., 2021; Osman et al., 2023; Teubler et al., 2023; Hauser84

et al., 2023; Mockert et al., 2023). Specifically, this study addresses the following research questions:85

• How do exceptionally poor forecasts, identified using a seasonally adjusted method based on ERA5, com-86

pared with busts derived from ERA-Interim, and how do these poor forecasts differ from exceptionally87

good forecasts?88

• Under which large-scale circulation regimes are exceptionally poor and good forecasts over Europe initial-89

ized, and which regimes do the models struggle to predict at forecast day 6?90

• Do regime transitions occur within the 6-day period of the exceptional forecasts, and is there a systematic91

difference in this evolution between poor and good forecasts?92

The paper is organized as follows: Section 2 introduces the datasets and methodology. Section 3 presents the93

results. The study concludes with a summary and final remarks in Section 4.94

2 | DATA AND METHODS95

2.1 | ERA5 reforecast and reanalysis datasets96

The analyses in this study are based on reforecasts—also known as hindcasts—which are retrospectively generated97

forecasts produced using a fixed model version (e.g., Hamill et al., 2013). Specifically, we utilize deterministic 10-day98

control reforecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) produced with the99

ERA5 model (Hersbach et al., 2020), with forecast start dates ranging from 1 January 1979 00 UTC to 31 Decem-100

ber 2023 12 UTC. While deterministic forecasts do not provide explicit representations of forecast uncertainty like101

ensemble systems, our dataset—consisting of twice-daily deterministic forecasts (00 UTC and 12 UTC) spanning 45102

years (32,850 forecasts)—offers a uniquely dense and long-term record that enables robust statistical characterization103

of forecast skill variability. This extensive temporal coverage surpasses that of ensemble forecasts using a fixed model104

version and thus provides greater opportunity to sample a wide range of atmospheric conditions and rare events. As a105

reference, ECMWF’s IFS sub-seasonal ensemble reforecasts (Vitart et al., 2017) span the past 20 years with forecasts106

initialized twice a week and 11 ensemble members, yielding around 22,280 forecasts in total. However, because en-107

semble members share the same initialization date, the forecasts are not independent and represent far fewer distinct108

large-scale circulation patterns than the raw total suggests.109

All ERA5 reforecasts within this period were produced using cycle 41r2 of the Integrated Forecasting System110

(IFS), which was operational fromMarch to November 2016, with a global horizontal resolution of 36 km. The dataset111

spans the Northern Hemisphere and is available on a 1° × 1° latitude–longitude grid. The temporal resolution of the112

10-day forecasts varies with lead time from 3-hourly intervals up to the 12-hour forecast, 6-hourly intervals up to the113

day 5 forecast, and 12-hourly intervals from day 5 to day 10 forecasts (i.e., up to t = 240h).114

In addition to the reforecasts, the ERA5 reanalysis dataset (Hersbach et al., 2020) is used for certain analyses and115

for verification for the period 1 January 1979 to 10 January 2024, since the final forecast in this dataset (31 December116

2023, 12 UTC) extends through to 10 January 2024.117

2.2 | Forecast skill measures118

Rodwell et al. (2013) developed the first systematic dataset of forecast busts over Europe, based on ERA-Interim119
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reanalysis data. The Rodwell et al. (2013) definition of a bust was based on two criteria: the anomaly correlation120

coefficient (ACC) and the root mean square error (RMSE) for geopotential height at 500hPa (Z500) over Europe.121

Both skill measures reflect the accuracy of large-scale circulation forecasts and are evaluated at forecast day 6 over a122

European domain (35 °–75 °N, 12.5 °W–42.5 °E). Due to the 1 ° spatial resolution of the dataset used here, we slightly123

adjusted their European box to 35°–75°N and 13°W–43°E. We tested several box sizes and found that variations of124

1–2 ° do not significantly affect forecast skill.125

In linewith Rodwell et al. (2013), ACC is used as ametric for forecast performance, capturing the spatial correlation126

between the forecast and the analysis while accounting for the underlying climatology. Specifically, we use the centred127

ACC calculation (e.g., Wilks, 2020), defined as128

ACC =
1
N

∑N
n=1 (f

′
n − f ′ ) (a ′n − a ′ )√

1
N

∑N
n=1 (f ′n − f ′ )2 1

N

∑N
n=1 (a ′n − a ′ )2

, (1)

where the index n runs over all N latitude–longitude grid points within the European domain. Forecast anomalies129

(f’) and analysis anomalies (a’) are calculated by subtracting a 30-day centred running-mean climatology—based on130

ERA5 reanalysis data from 1979 to 2023—from the respective absolute fields. Using a reanalysis-based climatology131

to derive forecast anomalies is justified at medium-range lead times: the model exhibits only a small seasonal bias132

over Europe, slightly negative in winter (5 gpm), increasing in spring, peaking in summer (+5–10 gpm), and decreasing133

again in autumn (cf. Figure S1 in the supplementary material). Bias correction has only a modest effect on RMSE134

(median reduction 1.5%) and often slightly reduces ACC, indicating that forecast-to-forecast variability and pattern135

errors dominate skill at day 6, and that the model climate remains consistent with the reanalysis. The spatial mean136

of the anomalies over Europe (f ′, a ′) is removed to enforce zero-mean anomalies, as required for the centred ACC137

calculation.138

The root mean square error (RMSE), the second criterion used by Rodwell et al. (2013) to define forecast busts,139

is given by140

RMSE =

√√√
1

N

N∑
n=1

(fn − an )2, (2)

with the absolute forecast (f) and analysis (a) Z500 fields over Europe. Note that the data points are weighted by the141

cosine of the latitude for the calculation of both metrics.142

2.3 | Year-round weather regimes in the North Atlantic–European region143

The Z500-based year-roundweather regime classification in theNorth Atlantic-European region byGrams et al. (2017)144

is used. The original definition was based on ERA-Interim (Dee et al., 2011) but has since been applied to ERA5145

reanalysis data (Hersbach et al., 2020) and used in several recent studies (e.g., Hauser et al., 2024; Lemburg and146

Fink, 2024). Weather regimes are detected using six-hourly low-pass filtered and normalized Z500 anomalies in the147

period 1979–2019 over the North Atlantic-European region (80°W–40°E, 30–90°N). After performing an empirical148

orthogonal function (EOF) analysis, k-means clustering is applied to the seven leading EOFs which explain 74.4% of149

the variability. This clustering analysis yields seven weather regimes with three cyclonic (Zonal regime, Scandinavian150

trough, Atlantic trough) and four anticyclonic regime types (Atlantic ridge, European blocking, Scandinavian blocking,151

Greenland blocking). The mean patterns of the Z500 regimes are available in the supplementary material (Figure S2).152
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F IGURE 1 (a) Seasonal variations in skill measures. Evolution of the Z500-based ACC over Europe at forecast
day 6(left y-axis, black) and Z500-based RMSE over Europe at forecast day 6 (in m, right y-axis, turquoise)
depending on the time of the year. Thin lines represent means based on 12-hourly data, bold lines show the centred
30-day running means, and shading corresponds to the 25–75th percentile. (b) Scatter plot of ACC and RMSE of
Z500 over Europe at forecast day 6 for all ERA5 reforecasts. Colours indicate the forecast category: orange for poor
forecasts, blue for good forecasts, and grey for neutral cases. Marker types denote the season of each forecast. The
straight vertical and horizontal lines in both panels represent the Rodwell et al. (2013) thresholds used to identify
busts in ERA-Interim.

In this study, we use the weather regime perspective to characterise the large-scale circulation pattern for a153

given date by assigning one of the seven or no regime to it. For this purpose, we use the weather regime index (WRI)154

by Michel and Rivière (2011) and Grams et al. (2017). It measures the projection (dot product) of Z500 anomaly155

fields for a given time onto a fixed weather regime pattern (centroid of a cluster), and then standardizes it over time.156

Consequently, the WRI describes how strongly a specific large-scale pattern resembles a specific weather regime,157

expressed in standard deviations from an average projection. For physically meaningful regime periods, we follow the158

life cycle definition of Grams et al. (2017). A regime life cycle is detected when the following conditions are met: (1)159

The WRI needs to be equal or exceed 1.0 for consecutive time steps for a minimum duration of 5 days and (2) the160

regime must have the highest WRI out of all seven regimes for at least one time step within its life time. More details161

and further criteria for rare cases are documented in Hauser et al. (2024). Using regime life cycles rather than just the162

regime with the highest WRI for regime assignment leads to an additional category: the so-called no-regime category.163

This category includes periods when the large-scale flow pattern does not closely resemble any of the seven regimes164

or lacks sufficient persistence.165

From the reanalysis perspective, the WRI is computed using low-pass–filtered 3-hourly Z500 anomaly fields166

spanning January 1979 to January 2024. The forecast perspective, in contrast, uses instantaneous 12-hourly fields167

to accommodate 10-day reforecasts and prevent data loss at the edges. Verification is performed by comparing168

instantaneous WRI projections from the forecasts with their reanalysis counterparts.169
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F IGURE 2 (a) Occurrence rates of poor forecasts (relative to all forecasts within a year, in %) for multiple
database set-ups and thresholds: ERA-Interim based using the Rodwell et al. (2013) criteria (ACC < 40% and RMSE
> 60m) for once daily initialized forecasts (gold, solid) and twice daily initialized (orange brown, solid), ERA5-based
using the Rodwell et al. (2013) criteria (black, solid), the final selected percentile thresholds criteria (orange, solid)
and the trend as determined by linear regression (orange, dashed). (b) Occurrence rates of good forecasts (left y-axis)
using the percentile threshold (blue, solid) and its trend (blue, dashed). The annual mean ACC over Europe at day 6
(grey, solid) and the trend (grey, dashed) are displayed on the right y-axis. The shaded area around the linear
regression lines (dashed) correspond to the 95% confidence interval. The trends in the annual frequencies of poor
and good forecasts, as well as in ACC, are statistically significant and remain robust after accounting for serial
autocorrelation

3 | RESULTS170

3.1 | Revision and extension of the forecast bust definition171

The most established definition of forecast busts in the large-scale atmospheric circulation over Europe is that of172

Rodwell et al. (2013), who defined a bust as a Z500 forecast at day 6 with an anomaly correlation coefficient (ACC)173

below 0.4 and a root mean square error (RMSE) above 60 m within the European domain. This definition has been174

adopted in subsequent studies (e.g., Lillo and Parsons, 2017). Applied to ERA-Interim reforecasts over the period175

1989–2015, 7.2% of all reforecasts were classified as forecast busts (Rodwell et al., 2013). Using the same criteria,176

we analysed ERA5 reforecasts and identified 2.6% of all reforecasts as busts for the period 1979–2023, and 2.4%177

for the period 1989–2015, for consistency with Rodwell et al. (2013). This indicates a significantly lower rate of178

forecast busts in ERA5, likely due to substantial improvements in the forecasting system (i.e. model development,179

data assimilation, and observation usage) with the transition from IFS cycle 31r2 (ERA-Interim) to cycle 41r2 (ERA5).180

The standard definition of busts by Rodwell et al. (2013) relies on fixed thresholds for the full year and might181

therefore neglect potential seasonality in forecast performance. Figure 1a shows the seasonal cycle of RMSE and ACC182

for Z500 at day 6 over Europe, based on ERA5 reforecasts. First, the RMSE of Z500 is biased by the mean seasonal183

cycle, with lower errors during summer and higher errors during winter (turquoise line). In contrast, the ACCmeasures184

pattern correlation and is less sensitive to the seasonal mean (black line). Nevertheless, it also displays a seasonal cycle,185

reflecting general seasonal predictability with lower skill in summer and higher skill in winter. The interquartile range186

(shading in Figure 1a) highlights the skewness in the distributions of RMSE and ACC at day 6 over Europe: ACC is187

strongly negatively skewed, while RMSE is strongly positively skewed. A RMSE threshold of 60m captures extreme188

events well in summer but is less suitable in winter, where most forecasts exceed this threshold (dashed turquoise189

line). For ACC, the threshold of 0.4 lies well outside the interquartile range, making it more appropriate for identifying190
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exceptional events (grey dashed line and grey shading). Therefore, defining busts using fixed, year-round thresholds191

introduces a seasonal bias, causing bust frequency to reflect seasonal ACC variability rather than true performance192

declines.193

To better account for this seasonality, we explore alternative approaches and investigate four objective methods194

that explicitly incorporate seasonal effects. The first method follows Yamagami and Matsueda (2021), who defined195

busts over the Arctic as cases whereACC at day 6 falls below the monthly 10th percentile and RMSE at day 6 exceeds196

themonthly 90th percentile, based onmonth-specific climatological distributions. The second approach involves stan-197

dardizing ACC and RMSE to remove seasonal means and variances, using centred 30-day running mean climatologies198

and standard deviations (1979–2023). These standardized values are combined into a single composite index, defined199

as CI = −ACCstandardized + RMSEstandardized. Busts are then defined as dates for which the CI exceeds the 90th200

percentile of allCI values. In the third approach, rather than combining the standardized ACC and RMSE values, we de-201

termine percentile thresholds for each variable independently. Busts are defined as dates on which ACCstandardized202

falls below the 10th percentile and RMSEstandardized exceeds the 90th percentile. The fourth method uses empir-203

ical percentile scores and actual ACC and RMSE values are compared to their distributions within a centred 30-day204

climatological window (1979–2023). A forecast is classified as a bust if the ACC percentile score is below 3% and205

the RMSE percentile score is above 97%. For the latter three approaches, the percentile thresholds were chosen to206

yield a number of busts comparable to those obtained with the established Yamagami and Matsueda (2021) method.207

Additionally, we adjusted the original, fixed thresholds of Rodwell et al. (2013) to achieve a similar total number of208

identified busts, resulting in a choice of 0.5 for ACC and 45m for RMSE.209

For this study, we chose to base our analysis on the third approach, defining busts from deseasonalized, standard-210

ized ACC and RMSE values using separate percentile thresholds for each metric. Specifically, the thresholds are set211

at the 10th percentile for ACC and the 90th percentile for RMSE. This method identifies events that are exceptional212

relative to the typical forecast performance for that time of year, requiring both unusually low ACC and unusually high213

RMSE. Compared to the other methods, the resulting pool of bust dates is robust: most bust dates (73–95%) identified214

by the alternative approaches are also captured by this final definition. Using this method, we identify 1,934 busts,215

corresponding to 5.9% of all reforecasts. Figure 1b presents a scatter plot of all absolute ACC and RMSE values at day216

6 from the reforecasts, with bust cases highlighted in orange. The plot shows that nearly all busts defined by Rodwell217

et al. (2013) are still captured under the new definition. The few excluded cases likely fail to simultaneously meet218

both the low-ACC and high-RMSE values or are not exceptional when accounting for seasonal forecast performance.219

Notably, many events with ACC values above 0.4 are now classified as busts—an important refinement that reflects220

both the seasonality of forecast skill and the overall improvement of ERA5 over ERA-Interim.221

Extending beyond previous studies that focused solely on busts (e.g., Rodwell et al., 2013; Lillo and Parsons,222

2017; Yamagami andMatsueda, 2021), we also analyse the counterpart of busts, namely exceptionally good forecasts.223

Periods of above-average predictability (so-called ’windows of opportunity’) have been well studied on sub-seasonal224

to seasonal timescales (e.g., Mariotti et al., 2020), but remain less explored for the medium range. We here define225

good forecasts as those with deseasonalized, standardized ACC values above the 90th percentile and RMSE values226

below the 10th percentile. These events are highlighted in blue in Figure 1b and occupy a small region in the scatter227

plot, reflecting the concentration of good forecast skill in the highly skewed skill measure distributions. To distinguish228

our approach from previous definitions and to enable comparison with exceptionally good forecasts, we hereafter229

refer to busts as exceptionally poor forecasts.230
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F IGURE 3 Seasonal distribution of the fraction of exceptionally poor and good forecasts (in %). The bars show
the fraction of poor (panel a) and good (panel b) forecasts, respectively, aggregated over full months. The thin black
line represents the smoothed fraction at higher temporal resolution (originally 12 h, smoothed using a 20-day
moving window). Overlaid bars indicate the fraction of poor and good forecasts (in %) after removing consecutive
forecasts. The 95% confidence intervals are shown in grey.

3.2 | Occurrence rate and seasonality231

The frequency of poor forecasts over Europe at forecast day 6 has steadily declined with time (Figure 2a). Starting232

with a mean rate of around 11% in 1979 that declined to around 3% in 2023, a trend has been detected with a rate233

of −2.17% per decade over the analysis period. The negative trend likely corresponds closely with the increase in234

forecast accuracy, shown by the increase in annual mean ACC at day 6 (grey line in Figure 2b), which has risen by235

0.024 per decade. The decreasing number of poor forecasts corresponds well with the results of Rodwell et al. (2013)236

and Lillo and Parsons (2017), who found a decreasing frequency for their shorter time periods using ERA-Interim237

reforecasts and the absolute thresholds for RMSE and ACC. The annual rate based on their bust definition for a 22-238

year period of twice daily ERA-Interim reforecasts is illustrated in Figure 2a for once-daily (yellow) and twice-daily239

(orange) initial times. Both curves reveal a very similar evolution of poor forecast rate, hence demonstrating that240

forecast skill is largely independent of the time of day of initialization. While the evolution of poor forecast rates241

before the year 2000 is very comparable between the different datasets and methods, the rate afterwards diverges242

between the datasets with a stronger decline in frequency for the ERA5-based reforecasts. One reason for this is the243

increased assimilation of satellite-derived data that began around that time, together with more advanced satellite244

data assimilation methods in ERA5 compared to ERA-Interim (cf. Hersbach et al., 2020).245

In contrast to exceptionally poor forecasts, we found an increasing rate of good forecasts over Europe at day 6 in246

ERA5 reforecasts (Figure 2b, blue curve). Despite inter-annual variability, we identify a statistically significant increase247

in their rate, with a trend of +2.20%per decade. Again, around the year 2000, the sudden increase in forecast accuracy248

is reflected by a marked jump in in good forecast rate from 2% to 6%.249

Using standardized skill measures that consider the forecast accuracy at the respective time of the year dampens250

the seasonality of poor and good forecasts compared to the year-round threshold approach by Rodwell et al. (2013).251

However, the frequency can still show seasonality, because the variability and tail behaviour of forecast errors is252

again seasonally dependent. Some seasons naturally produce more or fewer extreme anomalies, which affects the253

likelihood of both exceptionally good and poor forecasts despite standardized skill measures. The monthly occurrence254

of exceptional forecasts is illustrated in Figure 3 and reveals an uneven frequency of both, poor and good forecasts.255
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This unevenness should be interpreted with caution, as the 95% confidence intervals for monthly bust frequencies are256

broad and overlapping (Figure 3a,b,; grey), indicating high uncertainty in the estimates. Such wide intervals suggest257

that the apparent seasonal patterns may not be statistically significant. The rate of poor forecasts is largest from258

April to September with a major peak from May to June (Figure 3a). As discussed in previous studies, a peak of259

poor forecasts in late spring/early summer may be linked to MCSs over North America, where MCS interactions with260

Rossby wave dynamics can influence downstream RossbyWave Packet development (e.g., Grazzini and Isaksen, 2002;261

Rodwell et al., 2013; Parsons et al., 2019). During the cold season, the rates are lower indicating less exceptionally262

poor forecasts during winter. The seasonal signals found here deviate from the seasonality in the ERA-Interim bust263

dataset, in which 24% of the annual busts were identified in the months of September and October alone. Lillo and264

Parsons (2017) emphasized the prevalence of poleward-recurving tropical storms across the central North Atlantic in265

their bust cases, hence linked their peak in busts to the North Atlantic hurricane season. This peak is absent in our266

dataset, likely because the mean forecast accuracy is removed for each time of the year, which reduces the influence267

of seasonally lower skill during the North Atlantic hurricane season.268

For exceptionally good forecasts, the seasonality is less pronounced compared to poor forecast (Figure 3b). The269

highest rates are found in June and from October to December. The fact that both exceptionally poor and good270

forecast show a peak rate in June indicates an increased variability with a broader forecast error distribution during271

that time of the year (cf. Figure 1a), making it more likely to observe a considerable number of both exceptionally poor272

and good forecasts in the same month. For the extended winter months, sources of enhanced skill (although more273

importantly for extended-range forecasts) include the Madden–Julian Oscillation, the El Niño–Southern Oscillation,274

and the Stratospheric Polar Vortex (e.g., Mariotti et al., 2020).275

3.3 | Consecutive exceptional forecasts276

Forecast busts can occur in successive episodes rather than as isolated events (e.g., Rodwell et al., 2013, their Figure277

1). It is therefore of interest to examine whether exceptionally poor and good forecasts tend to occur as isolated or278

consecutive events, whether any changes in this behaviour have occurred over the 45-year period and whether this279

depends on the time of year.280

We find that many exceptionally poor and good forecasts occur not isolated, but with a preceding or following281

poor and good forecast, respectively. Considering the full period (1979–2023), 58% of all poor forecasts and 47%282

of all good forecasts occur in a series of at least two consecutive poor or good forecasts. These numbers rapidly283

rise when we consider a period of +/- 3 days around each exceptional forecast; then 79% of poor and 73% of284

good forecasts occur in a sequence. Figure 4a shows the annual share of good and poor forecasts that exhibit a285

same-skill preceding or following forecast. The annual share is subject to a high inter-annual variability (thin lines286

in Figure 4a), but the 5-year means (thick lines with markers) show a more clear picture on the trends within the287

dataset. Consecutive poor forecasts dominate in earlier years (≈1979–2007), but we find a tendency of decreasing288

consecutive poor forecasts after this period (bold orange line in Figure 4a). This decrease corresponds to a shift from289

clustered toward more sporadic and isolated poor forecasts and coincides with gradual improvements in observations290

that may have reduced the likelihood of forecasts persisting in a poor state across consecutive runs. The frequency291

of consecutive poor forecasts strongly fluctuates towards the end of the reforecast period (≈2015–2023), suggesting292

that these fluctuations may reflect enhanced inter-annual climate variability. Good forecasts, in contrast, increasingly293

occur as consecutive events, indicating a more stable forecast performance in the medium range, that is, the system294

is able to maintain high forecast skill over multiple days (bold blue line in Figure 4a). This suggests the presence of295

windows of opportunity.296
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F IGURE 4 (a) Evolution of the frequency of consecutive, exceptional forecasts. Share of poor (good) forecasts
preceded or followed by a poor (good) forecast (in %) as a function of year. Orange lines point to poor forecasts, blue
lines to good forecasts. Thin lines represent the annual share, thick lines with bullets indicate the 5-year mean. (b)
Seasonality of consecutive, exceptional forecasts. Share of poor (good) forecasts preceded or followed by a poor
(good) forecast (in %) as a function of the month of the year.

Seasonal differences are evident when comparing the occurrence of consecutive poor and good forecasts over297

the course of the year (Figure 4b). There is high variability with several peaks for consecutive poor forecasts, with298

preferred occurrences in January, June and October (orange line). A minimum is found from July to September. This299

seasonality pattern of only consecutive poor forecasts shows close similarities with the seasonality of all ERA-Interim300

based busts of Rodwell et al. (2013); Lillo and Parsons (2017). Although our novel identification of poor forecasts301

considers the seasonality in skill measures and therefore significantly reduces seasonality on poor forecast frequency,302

the seasonality re-emerges when considering consecutive busts. This suggests that while our normalization accounts303

for seasonal variations in baseline forecast skill, it does not remove the underlying dynamical processes that govern304

consecutive poor forecasts. As a result, the probability of extended periods of poor forecast performance still peaks305

in the same months (January, June, and October) identified in the ERA-Interim study. In contrast to poor forecasts,306

consecutive good forecasts show a clear peak from spring to summer (blue line in Figure 4b), suggesting that medium-307

range windows of opportunity are more likely during the warm season.308

3.4 | Spatial mean patterns309

We examine year-round patterns of exceptionally poor forecasts at initial time and day 6 in the verifying analysis,310

comparing them with the ERA-Interim busts of Rodwell et al. (2013). Consecutive events are retained in the following311

analyses, consistent with previous studies. Figure 5 (top row) shows Northern Hemisphere composites of Z500 and312

CAPE, highlighting large-scale patterns extending well upstream and downstream of Europe. At day 0, poor forecasts313

feature a pronounced Rossby wave train spanning the western Northern Hemisphere, from the dateline to Europe314

(Figure 5a), in agreement with the ERA-Interim composite (cf. Rodwell et al., 2013, their Figure 4a). The ’Rockies315

trough’ is again a robust feature, while positive Z500 anomalies dominateWestern and Southern Europe and negative316

anomalies appear over Iceland and Scandinavia. However, three differences stand out: (1) the ’Canada high’ is absent,317

(2) the eastern US ridge is stronger and more robust, and (3) the Scandinavian trough extends northwestward into318
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F IGURE 5 Mean patterns of exceptionally poor forecasts of Z500 at day 0 (left column), CAPE at day 0 (middle
column), and Z500 at day 6 (right column) based on the verifying analysis. The rows show the composites
year-round (upper row), Northern hemispheric winter (DJF, middle row), and Northern hemispheric summer (JJA;
upper row). The black box marks the area used to determine the ACC and RMSE at day 6 (35°–75°N, 13°W–43°E).
Dots represent grid points where the 95% confidence interval of the block-bootstrap distribution excludes zero,
indicating robust mean anomalies against temporal sampling variability. Note that to remove long-term trends, we
de-trend our fields by subtracting a linear least-squares fit at each grid point and for each calendar day, smoothed
with a 20-day running mean (±10 days around the centred date).
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Canada. CAPE anomalies (Figure 5b) reveal enhanced instability from the Gulf of Mexico to the southeastern US,319

consistent with the ’North American CAPE region’ of Rodwell et al. (2013, their Figure 4b), suggesting MCSs may320

contribute to downstream forecast degradation (e.g., Grazzini and Isaksen, 2002). By day 6, the verifying analysis321

shows ridging from the eastern North Atlantic into Europe and negative Z500 anomalies over the Mediterranean,322

Iceland, and Greenland (Figure 5c). The upstream Pacific Rossby wave evident at day 0 disappears, and the main ridge323

is centred over the eastern North Atlantic rather than over the North Sea as in Rodwell et al. (2013, their Figure 3).324

Such discrepancies likely reflect the differences in bust/poor forecast definitions, reanalyses (ERA-Interim vs. ERA5),325

and analysis periods (1989–2010 vs. 1979–2023).326

The year-round mean patterns of good forecasts differ substantially from those of poor forecasts (Figure 6, up-327

per row). At initial time, the large-scale circulation over Europe is characterized by strong positive Z500 anomalies328

extending from eastern coast of North America to northeastern Europe, accompanied by a trough over the western329

Mediterranean (Figure 6a); both being robust features. Unlike in poor forecasts, no clear Rossby wave pattern is ap-330

parent upstream of Europe. The elevated CAPE over North America observed in poor forecasts is absent (Figure 6b),331

with some regions even exhibiting negative anomalies. These results suggest that enhanced convective instability over332

North America can act as a source of downstream forecast error, whereas its absence is associated with improved333

forecast skill over Europe. Negative CAPE anomalies prevail in the western Mediterranean and positive anomalies334

in the eastern Mediterranean, which indicates an inverse signal compared to poor forecasts. By day 6, the verifying335

analysis shows a circulation pattern very similar to that at initial time over Europe (Figure 6c), suggesting only minor336

structural evolution over the 6-day period. Strong positive Z500 anomalies continue to dominate high-latitude re-337

gions in Europe but are shifted towards Greenland and centred over Iceland, while negative anomalies appear more338

compact and prevail over western Europe.339

While year-round composites highlight robust differences between good and poor forecasts, they can mask im-340

portant seasonal variations in circulation and convective signals. Figures 5 and 6 show winter (DJF) and summer (JJA)341

composites; spring and autumn are in the supplementarymaterial (Figures S3, S4). Seasonal composites reveal marked342

contrasts, particularly at initialization, reflecting high intra-composite variability. Poor forecasts show a positive Z500343

anomaly over the western North Atlantic in winter but negative anomalies in summer, consistent with a stronger sum-344

mer Rossby wave train (Figure 5d,g). The North American CAPE signal of poor forecasts appears in summer but is345

absent in winter, linking warm-season convection to poor European forecasts (Figure 5e,h). For good forecasts, winter346

shows a clear wave pattern spanning the Northern Hemisphere at day 0, which breaks down by day 6, while summer347

patterns are more stable, with persistent ridging over Scandinavia (Figure 6d,f,i). Summer composites at initialization348

exhibit weaker signals outside the North Atlantic–European domain, reflecting high internal variability (Figure 6g).349

3.5 | Initial and forecast verification regime signatures from a reanalysis perspective350

Given the seasonal variability of exceptionally poor and good forecasts, we examine large-scale flow at initialization351

(day 0) and verification (day 6) using the sevenNorth Atlantic–Europeanweather regimes of Grams et al. (2017). Figure352

7 presents the year-round weather regime frequencies and relative weather regime frequency anomalies for poor and353

good forecasts, as represented in the reanalysis, with red colours corresponding to blocked regimes and blue colours354

to cyclonic regimes. Figures showing seasonal patterns are provided in the supplementary material (Figure S6), and355

significant seasonal deviations from the year-round picture are highlighted where relevant.356

Both poor and good forecasts were initialized and verified during all seven regimes, as well as during periods357

without a dominant regime, referred to as the no regime category (Figure 7a). This alignswith the findings of Yamagami358

and Matsueda (2021), who showed that forecast busts over the Arctic can be initialized under all Arctic weather359



14 Hauser et al.

F IGURE 6 Same as Figure 5, but for exceptionally good forecasts.

regime patterns, rather than being limited to specific regimes. However, an anomaly-based perspective provides more360

distinct insights by accounting for the underlying climatological regime frequencies. Poor forecasts are unusually often361

initialized during the no regime and the two cyclonic regimes ZO and ScTr (Figure 7b, left, day 0). The increases are362

statistically significant for the no regime and ZO. Positive ZO frequency anomalies are evident in all seasons but are363

strongest in summer and autumn (Figure S6a). The increased frequency of the no regime aligns with Büeler et al.364

(2021); Osman et al. (2023), who attribute generally low skill to the no regime category of Grams et al. (2017), as the365

atmosphere is in a highly transient state at that time. Additionally, these authors note decreased forecast skill for ZO366

in summer, which is consistent with our results. Decreased relative frequency anomalies were found for AT and three367

out of four blocked regimes (AR, ScBL, GL) at day 0 for poor forecasts. At forecast validation time (Figure 7b, left, day368

6), days are again more frequently assigned to the no regime category and the two cyclonic regimes (ZO and ScTr),369

with significant increases for the no regime and ScTr. Although not significant, a positive anomaly is detected for the370

blocked regime EuBL, most evident in spring (Figure S6b). This is consistent with a poorly forecasted event linked to371

the onset of EuBL in spring 2016, whichwas analysed in detail as one of themost significant forecast busts over Europe372

(Magnusson, 2017; Grams et al., 2018; Hauser et al., 2023). Large negative and significant frequency anomalies were373

found for AT, GL, and ScBL at validation time for poor forecasts (day 6), indicating the rare co-occurrence of these374
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F IGURE 7 (a) Year-round weather regime frequencies (stacked, in %) for poor (left) and good (right) forecasts at
initial time (day 0) and verification time (day 6), using the no re regime category (no), the three cyclonic regimes
Atlantic trough (AT), Zonal regime (ZO), Scandinavian trough (ScTr), and the four anticyclonic regimes Atlantic ridge
(AR), European blocking (EuBL), Scandinavian blocking (ScBL), and Greenland blocking (GL). (b) Year-round weather
regime frequency anomalies relative to climatological frequency (in %). The climatological frequency of weather
regimes is based on the period 1979–2023 and displayed in Figure S5 in the supplementary material. Masked bars
point to statistically significant anomalies based on a bootstrapping, taking into account consecutive dates (N =
2000, < 1% or > 99%).

regimes with poor forecasts over Europe.375

The signals of increased regime frequencies differ markedly for good forecasts. At day 0, the frequency of the two376

blocked regimes ScBL and GL is significantly increased, particularly for ScBL (Figure 7b, right, day 0). This suggests377

that good forecasts are preferentially initialized during active regime patterns, with a strong preference for certain378

blocked regimes. The increased GL frequency is dominated by summer events, while the dominant positive ScBL379

anomaly is evident and significant across all seasons but is largest and significant in winter and summer (Figure S6c).380

These results are consistent with the generally high skill of ScBL forecasts in summer and autumn (Büeler et al., 2021;381

Osman et al., 2023). The frequency of the remaining two blocked regimes (EuBL and AR) corresponds to their climato-382

logical occurrence. All cyclonic regimes and the no regime exhibit negative frequency anomalies for good forecasts at383

initial time, supporting the idea that good forecasts are less frequently initialized during cyclonic and highly transient384

circulation patterns. At forecast validation time (Figure 7b, right, day 6), the positive anomalies of GL and ScBL in-385

crease compared to day 0. Again, the positive ScBL anomaly is evident and this time the increased frequency of ScBL386

is significant across all seasons, particularly in summer when ScBL is climatologically the most frequent of the seven387

regimes (Figure S6d). Negative anomalies also grow for cyclonic regimes and the no regime, with significant reductions388

in frequency for ZO, ScTr, and the no regime. This further highlights that the model performs exceptionally well in389

predicting the two blocked regimes, a finding that may seem contradictory given the intrinsically low predictability and390

often sudden onset of blocking (e.g., Nakamura and Huang, 2018). We examine this apparent contradiction further391

below.392
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3.6 | Regime evolution during the forecast period for cases of poor and good forecasts393

This and all remaining subsections of Section 3 primarily analyse howweather regimes behave during periods of excep-394

tionally good and poor forecasts, as our goal is to explore variabilitywithin regimes rather than to attribute exceptional395

forecast skill to specific regime types. We first classified all periods based on the type of flow change to investigate396

the large-scale pattern evolution over 6-day periods from a reanalysis perspective: persistent regime (or persistent397

no-regime), regime onset (transition from no-regime to one of the seven regimes), regime decay (transition from one398

of the seven regimes to no-regime), and regime-to-regime transition (transition between two regimes). Across all fore-399

casts between 1979 and 2023, 37% of the 6-day periods showed no regime change (persistent regime; Figure 8a,400

grey bar). The second most frequent case was regime-to-regime transitions, accounting for 28% of periods. Regime401

onsets and regime decays occurred at similar frequencies, with 17% and 18%, respectively.402

Coloured bars in Figure 8a illustrate how the distribution of these categories differs between exceptionally poor403

and good forecasts compared to the full dataset. Persistence of the large-scale circulation is more common in good404

forecasts and slightly less common in poor forecasts, but the differences are not statistically significant (z-test for405

proportions). The share of regime onsets is comparable between poor and good forecasts and slightly higher than the406

climatological proportion, suggesting that regime onsets are somewhat more likely to be associated with exceptional407

forecasts. A clear difference emerges for regime decays: they occur significantly more often in poor forecasts than408

in good forecasts. The opposite holds for regime-to-regime transitions, which are significantly more frequent in good409

forecasts. This indicates that forecasts tend to perform better in situations with transitions between regimes than in410

cases of regime decay into a no-regime state.411

The categorical analysis provides a first overview of transition types, but more detailed insights emerge when we412

directly compare the active regime on day 0 with that on day 6 in the reanalysis, focusing on how the percentage413

of cases with poor forecasts differs from that with good forecasts (Figure 8b). First, the largest contrasts are found414

for the persistence of no regime activity and the ScBL regime. No-regime persistence within the 6-day period is415

much more common in poor forecasts, with the odds being only half as high in good forecasts. In contrast, ScBL416

persistence within the 6-day period is much more common in good forecasts with odds nearly four times higher in417

good forecasts. Second, beyond persistence, several other transitions highlight systematic differences between poor418

and good forecasts. Onsets or transitions into ScBL, such as from the no regime, AT and EuBL, are consistently more419

common in good forecasts. In particular, the transition from EuBL to ScBL is strongly favoured in good forecasts,420

showing that this transition is nearly ten times more likely in good forecasts than in poor ones. This suggests that421

good forecasts tend to depict the transition into ScBL more frequently and with greater persistence. A similar strong422

signal appears for the AR-GL transition, which is more than four times as likely to occur in good compared to poor423

forecasts. Overall, higher frequency of regime-to-regime transitions in good forecasts (cf. Figure 8a) mainly reflects424

transitions between blocked regimes (central square in Figure 8b). And third, several regime decays show a strong425

association with poor forecasts, namely AT, EuBL, and ZO decays, all of which exhibit odds ratios (ORs) below 0.5,426

indicating that these transitions occur at least twice as often in poor forecasts as in good ones. To conclude, these427

results highlight the added value of analysing regime types individually, as overall signals in broad regime evolution428

categories can be dominated by specific regime transitions.429

3.7 | Reanalysis perspective on regime persistence and transition timing430

While poor and good forecasts over Europe show a similar share of cases without regime transitions, their comparison431

reveals statistically significant differences (Figure 8b). These motivate a more detailed analysis of the persistence of432
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F IGURE 8 (a) Fraction of forecasts (in %) for the four different categories of regime evolution within the 6-day
period as represented in the reanalysis: (i) persistent regime or persistent no-regime, (ii) onset of a regime out of the
no regime, (iii) decay of a regime into the no regime, and (iv) transition from one into another regime (both not the no
regime). Grey bars correspond to all forecasts (1979–2023), orange bars to poor forecasts and blue bars to good
forecasts. Hatched bars show categories where the difference in proportions between good and poor forecasts is
statistically significant, based on a z-test for proportions (p<0.05). (b) Differences in the relative share of
regime-to-regime combinations between poor and good forecasts (in %), based on reanalysis data from day 0 to day
6. Cases with regime persistence (i.e., the same regime at day 0 and day 6) appear along the diagonal. The box
marked by thick lines in the centre of the matrix indicates persistent blocked regimes (in the diagonal) or
blocked-to-blocked regime transitions. Cells of the 8×8 transition matrix were tested for differences between poor
and good forecasts using z-tests or permutation tests (for rare transitions), with FDR correction (α = 0.05). For
transitions that are statistically significant and meet a practical effect threshold (≥ 2 percentage points difference or
odds ratio (OR) ≥ 2 2 or ≤ 2 0.5), the exact relative difference (in bold) and the OR are displayed.
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F IGURE 9 Forecast skill for all forecasts from 1979 to 2023, grouped by the initial regime and 6-day persistence
in the reanalysis: ’persistence’ indicates the regime remains unchanged after 6 days, while ’no persistence’ indicates
a transition to a different regime within 6 days in the reanalysis. White lines correspond to the median. Forecast skill
is measured by the Z500-based, standardized ACC over Europe at forecast day 6. Star markers within the
no-persistence category show the median skill for each specific transition into a different regime.

no-regime episodes in poor forecasts and of ScBL in good forecasts, again from a reanalysis perspective. Around 16%433

of poor forecasts are linked to persistent no-regime periods, whereas if poor forecasts were randomly distributed434

across all periods, only about 12% would be expected. This represents a modest but meaningful enrichment, with435

poor forecasts being roughly 30%more likely than chance to coincide with persistent no-regime episodes. Most poor436

forecasts during persistent no-regime periods (≈65%) occur consecutively, thereby resulting in extended intervals437

of low predictability. Both consecutive and isolated events occur year-round, but peak in spring (not shown). The438

modestly higher fraction of poor forecasts (16%) compared to good forecasts (9%) occurring during persistent no-439

regime periods raises the question of how forecast skill over Europe depends on initialization in a no-regime state and440

on the persistence of such conditions. Using all 6-day forecasts from 1979 to 2023, we find that forecast skill over441

Europe, measured by the standardized ACC, is higher during periodswith a regime onsetwithin the 6-daywindow than442

during persistent 6-day no-regime periods (Figure 9a, left). The exact type of regime onset also plays a role, with the443

highest forecast skill over Europe occurring for transitions into ScBL, and the lowest skill for transitions into cyclonic444

regimes such as ZO and ScTr (stars in Figure 9a, left). The difference between the two forecast skill distributions is445

statistically significant (Mann–Whitney U test p<0.05, effect size>0.1) and suggests that the persistence of large-scale446

flow regimes may influence forecast skill. Forecasts initialized during persistent no-regime periods show lower skill447

because the atmosphere remains disorganized, lacking slowly varying structures that constrain future evolution. In448

contrast, when a transition toward a regime is underway, the flow organizes into a more stable large-scale pattern,449

reducing the number of possible evolutions.450

Of all good forecasts over Europe, nearly 17% are initialized during ScBL periods. Among these, themajority, 54%451

(corresponding to 8.6% of all good forecasts), are associated with persistent ScBL periods. For comparison, if good452

forecasts were randomly distributed across all periods, only 4.1% would be expected to occur during persistent ScBL.453
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This shows that persistent ScBL is roughly twice as frequent in good forecasts as would be expected by chance. Most454

good forecasts occur as consecutive good forecasts and hence provide a window of opportunity for enhanced skill.455

The seasonality of isolated events is rather flat, while consecutive events exhibit a clear peak occurrence between456

May and August, when the climatological frequency of ScBL reaches its maximum for the year (cf. Figure S5). Again,457

we compare the forecast skill over Europe depending on the persistence of ScBL (Figure 9a, right). Skill over Europe458

is higher when forecasts start in and cover persistent ScBL periods, whereas those with regime transitions or decay459

(into a no-regime state) exhibit lower skill. This indicates that forecasts initialized early in the life cycle of ScBL benefit460

from the regime’s persistence, and this time the differences between the two distributions are statistically significant.461

Notably, RMSE-based distributions are significantly different for ScBL, in addition to ACC, highlighting that both ac-462

curacy and error magnitude benefit from persistent ScBL (Figure S8). This pattern is unique to ScBL. For the other463

regimes, statistically significant differences in ACC are found only for AT (Figure S7), and differences in RMSE are not464

significant for any regime other than ScBL (Figure S8). When the non-persistent ScBL cases are separated by transi-465

tion type, forecast skill is lowest during ScBL decay. This suggests that the model has more difficulty representing the466

decay of the blocking pattern than its transition into a well-defined regime. Predictability requires persistence within467

a dynamically grounded attractor, and ScBL provides a clear example of this: In summer, ScBL has been shown to be468

the most physically grounded regime (Hochman et al., 2021, their Figures S4f and S5), combining strong dynamical469

constraints with persistence, which supports high forecast skill over Europe.470

From the reanalysis perspective, both exceptionally poor and good forecasts feature a similar share of 6-day471

periods with regime transitions (Figure 8a), indicating that the occurrence of a transition alone is not a sufficient472

predictor of forecast skill. Factors such as the nature of the involved regimes, sensitivity to initial errors, and the473

timing of the regime transition likely determine forecast skill. Here, we focus on the latter and investigate the timing474

of regime transitions within the 6-day forecasts, as represented in the reanalysis, using three transition categories475

(onset, decay, and regime-to-regime) for poor and good forecasts (Figure 10). For exceptionally good 6-day forecasts,476

regime transitions tend to occur early in the period (days 1–2; solid blue line), suggesting that the large-scale flow is477

already evolving predictably at initialization. In contrast, transitions in poor forecasts occur later, between days 4 and478

6 (solid orange line), and this difference compared with good forecasts is statistically significant. Such a pattern aligns479

with the general decline of predictability with lead time, with regime transitions being particularly sensitive due to480

the combined effects of initial uncertainty growth and transient dynamics. A more nuanced picture emerges when481

considering the transition categories separately. In the onset category, corresponding to transitions from no-regime482

to regime (dashed lines in Figure 10), good forecasts peak within the first day after initialization, while poor forecasts483

show two peaks, one very early and the other on day 5. This suggests that poor forecasts can still capture early484

regime onsets when the initial conditions already contain the processes leading to the onset, although forecast skill485

may deteriorate later due to error growth. For the decay category, corresponding to transitions from regime to no-486

regime (dotted lines in Figure 10), good forecasts show peaks in regime decay at both very early and late lead times,487

with the later peak being dominant. Poor forecasts show a tendency toward later decays, with a peak around day 5,488

although the timing distributions are not significantly different. This indicates differences in the timing of decays in489

the reanalysis, without implying whether the forecasts themselves captured the transition. Finally, regime-to-regime490

transitions show no major differences in timing between poor and good forecasts, and their distributions are not491

significantly different (dash-dotted lines).492

Taken together, our results indicate that forecast skill over Europe is higher when the large-scale flow is already493

organized at initialization, either through persistent regimes such as ScBL or through early regime onsets, whereas494

persistent no-regime periods and late transitions are generally associated with lower skill. This emphasizes that both495

the persistence of dynamically grounded regimes and the timing of regime transitions appear to influence, with ScBL496
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F IGURE 10 Probability density functions of weather regime transition times from reanalysis. Kernel density
estimates are shown for good (blue) and poor (orange) forecasts over Europe, distinguishing: (1) all transitions (solid),
(2) regime onset (dashed), (3) regime decay (dotted), and (4) regime-to-regime transitions (dash-dotted). The x-axis
shows transition time after forecast start (0–6 days), and the y-axis shows probability density. Shading highlights
statistically significant differences between poor and good forecasts within each category (Kolmogorov–Smirnov,
Mann–Whitney U, and permutation tests). KDE smoothing slightly extends curves beyond 0–6 days, though all data
lie within this range.

representing a particularly favourable case.497

3.8 | Link between exceptional forecasts over Europe and regime predictions over the498 North Atlantic–European region499

The previous section provided insights into regime development during periods of exceptionally poor and exception-500

ally good forecasts in the reanalysis. This raises the question of how large-scale regime developments are represented501

in the reforecasts. Here, we aim to systematically investigate whether exceptionally poor and good forecasts over Eu-502

rope are associated with incorrect or correct regime assignments over the North Atlantic–European region at forecast503

day 6. For each forecast and reanalysis, we identify the dominant regime at each lead time by assigning the regime504

with maximum WRI above 1.0 (or no regime if none exceed 1.0) and consider the forecast correct when the active505

regime matches that of the reanalysis.506

We found significant differences in the number of correct regime forecasts between poor and good forecasts507

(Figure 11). Less than 45% of all poor forecasts have a correct regime assignment at day 6, indicating that most508

poor forecasts over Europe do not capture the large-scale regime over the broader North Atlantic–European domain509

(orange line). In contrast, more than 80% of good forecasts over Europe show a correct regime prediction at day 6510

(blue line). The evolution of this correct regime share is very similar in the first two days. This does not necessarily511

mean that the magnitude of forecast errors is similar during these two days but rather suggests that errors need to512

grow in scale first to modulate the large-scale circulation in such a way, that it is recognizable in the WRI. After day513

2, the differences between poor and good forecasts become statistically significant and also differ from the evolution514

based on all forecasts from 1979 to 2023.515

The co-occurrence of poor forecasts over Europe with correct regime forecasts, as well as good forecasts with516

incorrect regime forecasts raises the question of how this can occur given that Europe lies fully within the regime do-517
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F IGURE 11 Percentage of ERA5 forecasts that show a correct dominant regime prediction (in %) as a function
of forecast lead time (days) for all forecasts (grey line), poor forecasts over Europe (orange), and good forecasts over
Europe (blue). The vertical black line marks the day we use for validation of forecast skill over Europe (day 6).
Shading around the lines indicates lead times where the difference in percentage between good and poor forecasts
is statistically significant, as determined by per-lead permutation tests corrected using the Benjamini–Hochberg
false discovery rate (FDR).

main. Figure 12 shows differences in absolute Z500 errors at day 6 between correct and incorrect regime forecasts for518

poor and good forecasts separately. For poor forecasts over Europe, larger errors over the North Atlantic extend into519

Europe, with the region of significantly larger errors spreading from the Central North Atlantic to Scandinavia (Figure520

12a). This reveals slight differences in errors within Europe, suggesting that larger errors over northern Europe are521

necessary for a simultaneous incorrect regime forecast over the North Atlantic–European region. Eastern and central522

Europe show slightly higher absolute errors when the regime forecast is correct, indicating that the largest errors tend523

to occur in the southern and eastern parts of Europe near the edges of the regime domain. When errors are largest524

in regions where the seven regimes have their main centres, such as the North Atlantic and northwestern Europe (cf.525

Figure S2), they are more likely to be associated with incorrect regime forecasts. For good forecasts, the 20% that526

coincide with an incorrect regime exhibit significantly larger errors over the North Atlantic (red shading), particularly527

southern Greenland and the area south of Greenland and Iceland, while differences over Europe are negligible (Figure528

12b). This indicates that incorrect regime forecasts can co-occur with good forecasts over Europe if large errors are529

confined to the North Atlantic, which could later propagate eastward. Overall, not all poor forecasts over Europe lead530

to incorrect regimes, since some regimes have their centres of action over the North Atlantic, while good forecasts531

over Europe can still coincide with incorrect regimes if significant errors over the North Atlantic are present. This532

demonstrates that forecast errors over Europe and regime errors are not linearly related.533

Lastly, we revisit the timing of regime transitions for poor and good forecasts, now splitting each skill group into534

forecasts with a correct regime prediction at day 6 and those without. Figure 13 shows the distribution of transition535

timing between day 0 and day 6 for cases with a regime transition. For poor forecasts, transitions occur earlier when536

the regime is correctly predicted, while incorrect regime forecasts mostly happen later in the forecast period. The537

two distributions differ significantly and are robust given balanced sample sizes (55% incorrect vs. 45% correct). This538

indicates that for poor forecasts, predicting the correct regime at day 6 strongly depends on early transitions, which539
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F IGURE 12 Difference in absolute Z500 forecast errors (gpm) at day 6 between correct and incorrect regime
forecast for (a) poor forecasts and (b) good forecasts. Negative values indicate smaller errors for correct regimes or
larger errors for incorrect regimes, and vice versa for positive values. The black box illustrates the box to calculate
skill measures over Europe, the yellow box shows the domain used to define the North Atlantic–European regimes.
The black box marks the area for calculating skill over Europe, and the yellow box shows the North
Atlantic–European regime domain. Diagonal hatching (black) marks grid points where the difference in absolute
Z500 forecast errors between correct and incorrect regime forecasts is statistically significant, based on a two-sided
Mann–Whitney U test at each grid point with p-values corrected for multiple comparisons using the FDR method (α
= 0.05).

provide a stronger signal, whereas later transitions reduce consistency with the evolving flow. For good forecasts,540

transition timing is less decisive. Correct regime forecasts tend to have early transitions (day 1–2), but incorrect541

forecasts occur at both early and late times, and the two distributions are not significantly different, partly due to542

sample size imbalance (80% correct vs. 20% incorrect). Overall, transition timing influences whether the regime is543

predicted correctly or incorrectly for poor forecasts, but it is less important for good forecasts.544

4 | SUMMARY AND CONCLUSIONS545

Despite considerable progress inmedium-rangeweather forecasting over recent decades, models can still occasionally546

fail to accurately predict atmospheric conditions, resulting in so-called forecast busts. Research into these events547

has expanded in the last two decades, however, many questions remain unresolved, especially regarding the large-548

scale pattern evolution and the role of weather regime transitions. Moreover, previous systematic studies do not549

include the most recent years and rely on now outdated model versions, such as ERA-Interim, highlighting the need550

for a renewed investigation using more modern forecast systems. In this study, we revisited the original definition551

of forecast busts—poor forecasts of Z500 over Europe at day 6—proposed by Rodwell et al. (2013), introduced a552

revised definition that incorporates the seasonal variability of the two skill measures (ACC and RMSE), and based it553

on the objectively identified anomalous behaviour of both metrics. Using this updated definition, we systematically554

investigated forecast busts over Europe at day 6 based on a 45-year dataset of ERA5 reforecasts from ECMWF, which555

includes 32,850 forecasts. For the first time, this study extends the original notion of busts to the updated terminology556

of ‘exceptionally poor forecasts’ and introduces ‘exceptionally good forecasts’, providing a systematic and consistent557

characterization of both over Europe. Year-round North Atlantic–European weather regimes by Grams et al. (2017)558

were used to analyse the evolution of the large-scale circulation in the 6-day forecast periods. Using this regime559

perspective, we gained insights into the occurrence and role of large-scale circulation changes for exceptionally poor560
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F IGURE 13 Probability density functions of weather regime transition times. Kernel density estimates are
shown for poor (orange) and good (blue) forecasts over Europe, with correct regimes in solid lines and incorrect
regimes in dashed lines at day 6. The x-axis shows transition time after forecast start (0–6 days), and the y-axis
shows probability density. Shading around the orange lines marks statistically significant differences between
correct and incorrect forecasts (Kolmogorov–Smirnov, Mann–Whitney U, and permutation tests). KDE smoothing
slightly extends curves beyond 0–6 days, though all data points lie within this range.

and good forecasts over Europe.561

The main results of this study can be summarized as follows:562

• Skill measures (ACC andRMSE) for Z500 exhibit seasonality, so exceptional forecasts are identified relative563

to typical skill at each time of the year, thereby capturing extreme deviations in amplitude and phase error.564

• Over the ERA5 reforecast period, exceptionally poor forecasts became less frequent (−2.17%/decade)565

and exceptionally good forecasts more frequent (+2.20%/decade), likely reflecting improved observa-566

tional data.567

• Despite applying for seasonality in skill measures for the detection of exceptional forecasts, seasonal568

effects persist, with poor forecasts remainingmore common during thewarm season, while good forecasts569

occur nearly evenly throughout the year.570

• Consecutive sequences of the same forecast category are common (58% poor, 47% good) but have571

evolved over time, with fewer successive poor forecasts and more successive good forecasts in recent572

years.573

• The mean picture of the large-scale circulation pattern differs sharply with Rossby wave train signals from574

the Pacific to Europe and ridging over the eastern North Atlantic for poor forecasts and blocking over575

northern Europe and a lack of upstream wave activity for good forecasts.576

• From a weather-regime perspective, poor forecasts are most often linked to cyclonic or no-regime states,577

whereas good forecasts correspond to anticyclonic, blocked regimes, particularly Scandinavian Blocking.578

• Regime transitions occur in approximately 60% of cases for both skill categories; however, transition579

type and timing matter, with good forecasts associated with earlier regime transitions and more frequent580

regime-to-regime transitions, whereas late transitions, which often involve a decay of a regime, are linked581

to poor forecasts.582

• Day-6 regime accuracy ranges from roughly 55% in poor forecasts to over 80% in good forecasts over583

Europe, yet the decisive factors are the large-scale error distribution and the timing of regime transitions,584
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with early transitions typically captured, whereas late ones are often missed.585

Referring back to the research questions addressed in the introduction, our results show that the characteristics586

of poor and good forecasts differ more strongly from each other than poor forecasts do across different analyses. The587

similarity between ERA-Interim-based (Rodwell et al., 2013; Lillo and Parsons, 2017) and ERA5-based poor forecasts588

indicates that, despite improvements in model quality and adjustments in the definition, the same types of events589

continue to challenge the forecasting system, suggesting that these errors are not model-specific. Although excep-590

tionally poor and good forecasts occur during all regimes, their distributions differ systematically: poor forecasts591

are more likely than good forecasts to occur during no-regime periods (35% vs. 27%) and cyclonic regimes (31%592

vs. 25%), whereas good forecasts are more likely than poor forecasts to occur during anticyclonic regimes (48% vs.593

35%). Overall, 16% of poor forecasts are associated with persistent no-regime periods compared with 9% of good594

forecasts, while good forecasts are roughly twice as likely as poor forecasts to be linked to persistent ScBL periods595

(9% vs. 4%), highlighting the importance of regime type and persistence. While the mere occurrence of a regime596

transition within the 6-day period in the reanalysis is not indicative of forecast skill, both the type of transition and, in597

particular, its timing within the 6-day period appear to have a significant influence on forecast performance. Overall,598

these findings suggest that improving forecasts requires not only continued investment in observational systems but599

also careful representation of regime dynamics and transition timing in numerical models.600

As with any study, several limitations should be acknowledged. Exceptionally poor and good forecasts show sub-601

stantial case-to-case variability, which we partly addressed by stratifying by season and regime transitions, though al-602

ternative classifications could provide additional insights. Our analysis is based on a singlemodel configurationwithout603

ensembles, limiting generalizability and preventing assessment of forecast skill versus ensemble spread, as in Ferranti604

et al. (2015). Inter-model and ensemble-based comparisons could clarify which features are model-specific. While us-605

ing year-round weather regimes and skill-based definitions improved interpretation, the identification of regimes and606

transitions depends on the chosen classification method, which potentially affects quantitative results. This study also607

does not explicitly quantify all dynamical or diabatic processes, such as upstream convection, Rossby wave breaking,608

or wave packet characteristics, which may influence forecast skill. Future research could leverage ensemble forecasts,609

investigate the societal impacts of extreme forecasts, track systematic errors, and expand analyses to additional re-610

gions and models to better understand medium-range forecast extremes and their underlying mechanisms.611
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